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A Log-Log-Normal Model

When continuous data are highly skewed, such as patients' monthly medical expenditures, log-linear gamma models

are often used to account for the non-normality. A marginal log-linear model for skewed data arising in clusters may

be written as:

Log-Log-Normal MMM:

i) �m
ij = exp(x i j�

m)

i i) �c
i j = exp(�i j + z i jai)

i i i) ai � MVN(0;D)

iv) Yi j jai � �(�c
i j ; �)

Where the gamma distribution is parameterized such that E(Y c) = �c and var(Y c) = (�c)2=�. To estimate �m, we

determine �i j using the marginalization constraint:
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and thus, �i j = x i j�
m � z

0

i jDz i j=2.
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A Log-Log-Gamma Model

Public health studies frequently involve Poisson processes where counts of incidents in a speci�ed interval are recorded

across multiple visits, locations or both. A mixture of the poisson distributions over a gamma process is often used to

account for extra variability (overdispersion) observed in count data of this type. The resulting marginal distribution

of the mixture is negative-binomial. A log-linear model for such data may be written as:

Log-Log-Gamma MMM:

i) �m
ij = exp(x i j�

m)

i i) �c
i j = expf�i j + log(ai)g

i i i) ai � �(�; k)

iv) Yi j jai � Poisson(�c
i j)

Where the gamma parameterization produces E(a) = �, var(a) = �2=k . Determining �i j with the marginalization

constraint we have:

�
m = (x 0i jx i j)
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i j log
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]
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]
and thus, �i j = x i j�

m � log(�). Lee & Nelder (1996) recommend constraining E(a) = � = 1, implying that the

coe�cient of variation in the gamma random e�ects distribution is constant,
√
var(a)=E(a) = 1=

p
k . In this case

�i j = x i j�
m.

The Page Approximation
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}
Further Discussion

Computational techniques in existing software have been proposed for MMMs for an audience of a varied skill set. Career

statisticians familiar with R and SAS can utilize the procedures provided herein to obtain marginal likelihood-based

inference with well known software. Those with less statistical programming expertise can use software of choice to �t

a random intercept model and arrive at a marginal estimate through the appropriate rescaling of estimates (as in the

PPN model) or implementing the approximations as outlined in Section 3.1. Our MMM speci�cations provide methods

for those with programming backgrounds to utilize existing software for direct estimation, while the approximations

allow simple marginalization from conditional output of standard packages for general users.

Conditional model (GLMM) estimates and interpretations can be heavily dependent on assumed variance structures,

as shown in Heagerty & Zeger (2000). Marginal models estimate e�ects that are directly observable in the data

and are more robust to the chosen dependence model. This is illustrated by the similarity in the marginal mean

parameter estimates across the range of association assumptions in the crossover trial and visual impairment examples

of Section 4. While alternative approaches to estimating marginal models, such as a GEE approach, avoid specifying

the complete joint distribution of the responses, the MMM approach retains the capability of likelihood inference and
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the consequent bene�ts therein. The GEE approach precludes the bene�ts of full likelihood-based analysis of data, such

as weaker restrictions on missing data processes for valid inferences. For instance, if there were missing data in the

visual impairment study which depended on race, the type of missingness would be MAR and would exclude GEE from

modeling choice considerations due to its requirement of missing data to be MCAR (Rubin (1976); Robins, Rotnitzky

& Zhao (1995); Scharfstein, Rotnitzky & Robins (1999)). Weighted GEE (WGEE) is a well-known �x for GEE in

MAR situations, however is di�cult to apply with intermittent missingness which poses no additional considerations

for the MMM (Molenberghs & Verbeke (2005)).

Simulation studies as well as published data sets stated to have MAR responses were utilized in comparing the estimates

of MMM to GEE (results available upon request). No appreciable di�erences were found in the speci�c instances tested.

In light of the theory pertaining to consistent GEE estimates in MAR situations, the lack of appreciable di�erences may

be due to the method of arti�cially inducing MAR in the simulation setting or features of the speci�c data sets used

as opposed to vetting GEE in all MAR situations. A suitable simulation comparing GEE and MMM in MAR situations

is sought in future work.

The crossover example models were �tted with SAS software, and the visual impairment example models were �tted

with R. In SAS, all models can be �tted with PROC NLMIXED, with the LLN exact method requiring Newton's

method and Gaussian Quadrature coding within the call. In R, LLN and LN models were �tted utilizing R package

lnMLE (Heagerty (1999), Comstock & Heagerty (1999)). The other four models of the visual impairment example

were �tted with a modi�ed gnlmix() R function of the repeated package (Lindsey (2001), see R code �le). We

note generally that: (1) it required substantially more quadrature points to obtain stable variance estimates than

are currently used as defaults in existing packages (we used 100 points in the cross-over example); (2) alternative

integration methods are available, such as MCMC, Romberg, etc. but are more computationally demanding. We

used glnmix()'s exact Romberg integration for the visual impairment example and experienced exceedingly lengthy

computational times; and (3) the LLN model requires two levels of integration, for each integral in constructing the

marginal likelihood an additional integral must be performed for constructing the delta function; making it the most

di�cult to estimate.

Furthermore, the study design itself may have bearing on the appropriateness of conditional versus marginal

estimates. In the cross-over study, direct observations of outcomes under both treatments are available for estimating

the subject-speci�c parameters, since the predictor of interest (treatment) varies within a subject; this makes

conditional interpretations more compelling for the cross-over trial example and MMMs straightforwardly provide the

complementary marginal interpretations. In the visual impairment example however, only marginal information across

groups is available on race di�erences. The data contain no directly observed information for the conditional, subject-

speci�c question of how outcomes would di�er if an individual's race changed, given the predictor does not vary within

a subject. In this case, mixed-models produce conditional estimates that can be thought of as causal extrapolations.

Though one may be interested in the counterfactual world describing expected outcomes which would have occurred if

a particular person had been of an alternate ethnicity, no directly observed data are available for support. Estimability

of the subject-speci�c e�ects here comes via the assumptions placed on the random e�ects and their distribution. If

the often unveri�able random e�ects assumptions are incorrect, the conditional estimates can be far from the truth,

as in any extrapolation. MMMs allow the use of mixed model architectures for describing associations within clusters

while providing appropriate marginal estimates for predictors that do not vary within clusters, avoiding this type of

causal extrapolation.

There are a variety of opportunities for further research. Given that MMMs are likelihood based, Bayesian castings could

be investigated by adding prior distributions. Identifying additional conditional structures that produce commonly used

marginal models will extend the availability of the marginalization approach, such as copulas. As further computational
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advances are made in mixed model estimation, the connections shown here allow them to translate to advances in

marginal model estimation as well. Performing sensitivity analyses towards latent variable assumptions will be furthered

by having a wide range of easily implemented random e�ect distributions, as set forth by Lee & Thompson (2007)

and Nolan (2010). Thus, investigations of alternate latent variable constructions via distributional transformations (as

used in the LLB example) will be bene�cial, as such transformations allow the random intercept to be on the same

scale as the conditional coe�cients, an issue raised in Lee & Nelder (2004).
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